Spacecraft Autonomous Navigation Technologies Based on Multi-source Information Fusion

(Author) (Author)
& 2 more
Usually delivers within 2 weeks.


This book introduces readers to the fundamentals of estimation and dynamical system theory, and their applications in the field of multi-source information fused autonomous navigation for spacecraft. The content is divided into two parts: theory and application. The theory part (Part I) covers the mathematical background of navigation algorithm design, including parameter and state estimate methods, linear fusion, centralized and distributed fusion, observability analysis, Monte Carlo technology, and linear covariance analysis. In turn, the application part (Part II) focuses on autonomous navigation algorithm design for different phases of deep space missions, which involves multiple sensors, such as inertial measurement units, optical image sensors, and pulsar detectors. By concentrating on the relationships between estimation theory and autonomous navigation systems for spacecraft, the book bridges the gap between theory and practice. A wealth of helpful formulas and various types of estimators are also included to help readers grasp basic estimation concepts and offer them a ready-reference guide.

Product Details

Springer Verlag, Singapore
Publish Date

Earn By Promoting Books

Earn money by sharing your favourite books through our Affiliate programme.

Become an Affiliate
We use cookies and similar methods to recognize visitors and remember their preferences. We also use them to help detect unauthorized access or activity that violate our terms of service, as well as to analyze site traffic and performance for our own site improvement efforts. To learn more about these methods, including how to disable them view our Cookie Policy.