A resource-light approach to morpho-syntactic tagging

Anna Feldman (Author) Jirka Hana (Author)
Usually delivers within 2 weeks.

Description

While supervised corpus-based methods are highly accurate for different NLP tasks, including morphological tagging, they are difficult to port to other languages because they require resources that are expensive to create. As a result, many languages have no realistic prospect for morpho-syntactic annotation in the foreseeable future. The method presented in this book aims to overcome this problem by significantly limiting the necessary data and instead extrapolating the relevant information from another, related language. The approach has been tested on Catalan, Portuguese, and Russian. Although these languages are only relatively resource-poor, the same method can be in principle applied to any inflected language, as long as there is an annotated corpus of a related language available. Time needed for adjusting the system to a new language constitutes a fraction of the time needed for systems with extensive, manually created resources: days instead of years.

This book touches upon a number of topics: typology, morphology, corpus linguistics, contrastive linguistics, linguistic annotation, computational linguistics and Natural Language Processing (NLP). Researchers and students who are interested in these scientific areas as well as in cross-lingual studies and applications will greatly benefit from this work. Scholars and practitioners in computer science and linguistics are the prospective readers of this book.

Product Details

Price
£44.54
Publisher
Brill
Publish Date
1 January 2010
Language
English
Type
Hardback
EAN/UPC
9789042027688

Earn By Promoting Books

Earn money by sharing your favourite books through our Affiliate programme.

Become an Affiliate
We use cookies and similar methods to recognize visitors and remember their preferences. We also use them to help detect unauthorized access or activity that violate our terms of service, as well as to analyze site traffic and performance for our own site improvement efforts. To learn more about these methods, including how to disable them view our Cookie Policy.