Quantum Groups and Their Primitive Ideals

Available
4.9/5.0
21,000+ Reviews
Bookshop.org has the highest-rated customer service of any bookstore in the world

Description

by a more general quadratic algebra (possibly obtained by deformation) and then to derive Rq [G] by requiring it to possess the latter as a comodule. A third principle is to focus attention on the tensor structure of the cat­ egory of (!; modules. This means of course just defining an algebra structure on Rq[G]; but this is to be done in a very specific manner. Concretely the category is required to be braided and this forces (9.4.2) the existence of an "R-matrix" satisfying in particular the quantum Yang-Baxter equation and from which the algebra structure of Rq[G] can be written down (9.4.5). Finally there was a search for a perfectly self-dual model for Rq[G] which would then be isomorphic to Uq(g). Apparently this failed; but V. G. Drinfeld found that it could be essentially made to work for the "Borel part" of Uq(g) denoted U (b) and further found a general construction (the Drinfeld double) q mirroring a Lie bialgebra. This gives Uq(g) up to passage to a quotient. One of the most remarkable aspects of the above superficially different ap­ proaches is their extraordinary intercoherence. In particular they essentially all lead for G semisimple to the same and hence "canonical", objects Rq[G] and Uq(g), though this epithet may as yet be premature.

Product Details

Price
£69.99
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Publish Date
Language
English
Type
Paperback
EAN/UPC
9783642784026
BIC Categories:

Earn By Promoting Books

Earn money by sharing your favourite books through our Affiliate programme.

Become an Affiliate
We use cookies and similar methods to recognize visitors and remember their preferences. We also use them to help detect unauthorized access or activity that violate our terms of service, as well as to analyze site traffic and performance for our own site improvement efforts. To learn more about these methods, including how to disable them view our Cookie Policy.